On the Sensitivity Equations of Four-Dimensional Variational (4D-Var) Data Assimilation

نویسنده

  • DACIAN N. DAESCU
چکیده

The equations of the forecast sensitivity to observations and to the background estimate in a fourdimensional variational data assimilation system (4D-Var DAS) are derived from the first-order optimality condition in unconstrained minimization. Estimation of the impact of uncertainties in the specification of the error statistics is considered by evaluating the sensitivity to the observation and background error covariance matrices. The information provided by the error covariance sensitivity analysis is used to identify the input components for which improved estimates of the statistical properties of the errors are of most benefit to the analysis and forecast. A close relationship is established between the sensitivities within each input pair data/error covariance such that once the observation and background sensitivities are available the evaluation of the sensitivity to the specification of the corresponding error statistics requires little additional computational effort. The relevance of the 4D-Var sensitivity equations to assess the data impact in practical applications is discussed. Computational issues are addressed and idealized 4D-Var experiments are set up with a finite-volume shallow-water model to illustrate the theoretical concepts. Time-dependent observation sensitivity and potential applications to improve the model forecast are presented. Guidance provided by the sensitivity fields is used to adjust a 4D-Var DAS to achieve forecast error reduction through assimilation of supplementary data and through an accurate specification of a few of the background error variances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Time-parallel Approach to Strong-constraint Four-dimensional Variational Data Assimilation

A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows to parallelize cost function and gradient computations. Solution continuity equations across interval boundaries are added as constraints. The augmented Lagrangian ...

متن کامل

Adaptive Tuning , 4 D - Var and Representers In

Four dimensional variational data assimilation, called 4D-Var in the atmospheric sciences literature, is a method for combining forecast, dynamical systems equations, prior information about properties of the atmosphere, and heterogeneous observations, to get an estimate of the evolving state of the atmosphere. Summary: We (abstractly) generalize thètoy' weak 4D-Var model in Gong, Wahba, Johnso...

متن کامل

Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM)

A four-dimensional ensemble variational (4D-EnVar) data assimilation has been developed for a limited area model. The integration of tangent linear and adjoint models, as applied in standard 4D-Var, is replaced with the use of an ensemble of non-linear model states to estimate fourdimensional background error covariances over the assimilation time window. The computational costs for 4D-En-Var a...

متن کامل

Sensitivity Analysis in Nonlinear Variational Data Assimilation: Theoretical Aspects and Applications

This chapter presents the mathematical framework to evaluate the sensitivity of a model forecast aspect to the input parameters of a nonlinear four-dimensional variational data assimilation system (4D-Var DAS): observations, prior state (background) estimate, and the error covariance specification. A fundamental relationship is established between the forecast sensitivity with respect to the in...

متن کامل

A penalized four-dimensional variational data assimilation method for reducing forecast error related to adaptive observations

Four-dimensional variational (4D-Var) data assimilation method is used to find the optimal initial conditions by minimizing a cost function in which background information and observations are provided as the input of the cost function. The optimized initial conditions based on background error covariance matrix and observations improve the forecast. The targeted observations determined by usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008